arXiv:2209.06300v2 [cs.CR] 31 Jan 2023

PINCH: An Adversarial Extraction Attack Framework for Deep Learning Models

William Hackett!, Stefan Trawicki!, Zhengxin Yu!, Neeraj Suri!?, and Peter Garraghan'-?

"Lancaster University
Mindgard

Abstract

Adversarial extraction attacks constitute an insidious threat
against Deep Learning (DL) models in-which an adver-
sary aims to steal the architecture, parameters, and hyper-
parameters of a targeted DL model. Existing extraction attack
literature have observed varying levels of attack success for
different DL models and datasets, yet the underlying cause(s)
behind their susceptibility often remain unclear, and would
help facilitate creating secure DL systems. In this paper we
present PINCH': an efficient and automated extraction attack
framework capable of designing, deploying, and analyzing
extraction attack scenarios across heterogeneous hardware
platforms. Using PINCH, we perform extensive experimental
evaluation of extraction attacks against 21 model architec-
tures to explore new extraction attack scenarios and further
attack staging. Our findings show (1) key extraction char-
acteristics whereby particular model configurations exhibit
strong resilience against specific attacks, (2) even partial ex-
traction success enables further staging for other adversarial
attacks, and (3) equivalent stolen models uncover differences
in expressive power, yet exhibit similar captured knowledge.

1 Introduction

Deep Learning (DL) has become a critical technology sup-
porting a growing diversity of applications. However, the
successful deployment and execution of DL models is threat-
ened by cyber attacks occurring within systems [4, 16,25, 58],
compromising DL model integrity, privacy, and confidential-
ity [64]. A particularly damaging threat against DL models
are extraction attacks (also known as model stealing). Ex-
traction attacks occur when an adversary attempts to extract
fundamental characteristics of a target DL model (architec-
ture, parameters, hyper-parameters) [63, 69] to reconstruct an
identical or highly similar DL model [30]. Such attacks result
in information leakage, digital IP theft, and enable further DL
model attacks to be staged [25,62,69].

Extensive studies of DL model extraction attacks have been
conducted to understand and mitigate their impact [9, 64].

However these studies have predominately been performed
with isolated attacks, each leveraging distinctive threat mod-
els and deployment scenarios with different DL model types,
datasets, and hardware platforms. Given that extraction at-
tacks yield varying degrees of success when exposed to differ-
ent DL model types and datasets [25,58,63,68], it is necessary
to study extraction attacks across a multitude of deployment
scenarios to determine whether there exist common associa-
tions between extraction attack success, DL model character-
istics and platform hardware properties.

Attaining such knowledge is constrained by the overwhelm-
ingly high technical effort (and time) required to understand,
implement and evaluate the large number of unique extraction
attacks, platforms and DL model architectures in existence.
This is because current studies are bespokely designed to
operate for a targeted or small sub-set of deployment scenar-
ios (e.g. a single hardware platform or DL model architec-
ture) [24,25, 58]. Whilst this approach is effective to demon-
strate extraction attack feasibility, it is not possible to study
attack effectiveness and generalizability without extensive
re-designing and engineering of attacks to operate within
different operational scenarios [32,37,59].

Extensive progress has been made to create extrac-
tion attack frameworks to alleviate the complexity of re-
implementing attacks and providing configurable attack sce-
narios [29, 36,43]. However, such frameworks exhibit limi-
tations towards studying generalizable features of extraction
attacks, as current proposed frameworks provide discrete ap-
proaches towards extraction, typically only implementing at-
tacks within one area of the DL system attack surface and
targeting specific model characteristics [36,69]. Additionally,
current frameworks are often limited to executing smaller
(often bespoke) models and datasets, unable to evaluate larger
models and complex dataset pairings deployed within the
modern DL landscape.

To tackle limitations of existing work, we present PINCH:
an efficient and automated extraction attack framework capa-
ble of deploying a large number of DL models, attacks, and de-
ployment environments in a generalizable manner. Our frame-

work performs (1) dynamic framework-independent model
loading and training via transfer learning and curated Al
deployment repositories, with (2) configuration of attacks en-
capsulated as attack scenarios, and (3) experiment automation
for recording and reporting.

PINCH is capable of automated attack execution that ex-
tracts DL model characteristics utilizing multiple areas of the
DL system attack surface, enabling exploration of scenarios
not examined within contemporary literature, and provides
support for unexplored adversarial attack staging. We demon-
strate the effectiveness of PINCH by empirically evaluating
extraction scenarios across different state-of-the-art extraction
attack types [24,25,46] when exposed to various DL model
architectures, datasets, and hardware/software environments.
Our work makes the following contributions:

PINCH: An end-to-end automated adversarial attack
framework capable of efficiently executing extraction
attack scenarios and enabling detailed evaluation across
a variety of model families, architectures, datasets, and
hardware platforms (Section 5).

Key extraction characteristics: Through extensive ex-
perimentation of hundreds of unique extraction attack
scenarios, we have identified key extraction attack char-
acteristics that affect success spanning model architec-
ture, and dataset complexity, and hardware (Section 7).

Further attack staging: We demonstrate the feasibility
of adversarial attack staging. Discovering it is possible
to launch successful model inversion attacks on DL mod-
els created from partially successful extraction attacks,
additionally uncovering limitations in existing methods
for measuring DL model similarity for denoting attack
success (Section 7.4).

Stolen model equivalency: We have identified that
stolen models can exhibit equivalent target model per-
formance, yet exhibit similar captured knowledge while
being composed of uniquely different DL model charac-
teristics (Section 8.3).

2 Background

2.1 Deep Learning Systems

Deep Learning (DL) is a sub-field of Machine Learning (ML),
which uses multiple processing layers to learn representations
from input data with multiple levels of abstraction [35]. DL
models are represented by Deep Neural Networks (DNNs);
collections of Operators (Convs, MaxPool, ReLU, etc.), spe-
cialized programs designed for performing actions on tensors,
grouped into Layers. A DNNs operator layers are selected
and organized based on desired architecture best suited for
different applications, e.g., Convolutional Neural Networks

Intellectual Cost Time, Hardware Cost Maintenance Cost Monetized API
—— —

..

..

1

: Execute Attack

1

' Parameters

1 Recreate

' Hyper -Parameters,
1

1

Archi
Adversary rchitecture

Figure 1: Overview of extraction attack process. Deep
Learning models comprising of architecture, parameters and
hyper-parameters can be be stolen via extraction attacks.

(CNNGs) for image classification, and Long Short-Term Mem-
ory (LSTM) for time-series data analysis. DL models lever-
age accelerator devices such as Graphics Processing Units
(GPUgs) that enable parallel execution of operators, hastening
the training process [19], as well as performing faster model
inference. A Deep Learning System (DL system) provides,
CPU, accelerators and the accompanying software (ML frame-
works, libraries) to perform DL model training and inference.

DL systems have been widely adopted throughout both
industry and research, providing considerable acceleration
to the creation of cutting-edge DL models capable of per-
forming tasks unknown to previous generational systems [53].
The widespread usage of such systems has lead to increasing
concern of privacy and security related issues surrounding
deployed DL models. The increased data and sophistication
present in DL models has made DL systems a target for ad-
versarial attacks, aiming to perform attacks spanning model
evasion [3], poisoning [57], as well as extract sensitive and
confidential data [4, 62, 69]. The concern raised from the
existence of such attacks has prompted extensive research
to understand adversarial attacks [4,27, 62], and protection
against successful attack execution [20, 64].

2.2 Model Extraction

Model extraction, also referred to as model stealing, is a set
of adversarial attacks that extract fundamental characteris-
tics of a DL model: its architecture, parameters and hyper-
parameters (Figure 1). A stolen model is created using extrac-
tion techniques to collect information leakage (model charac-
teristics) via access to a target DL model or its underlying DL
system, and recreating a copy of the target model [25,63,69].
A stolen model can be used for further attacks [58] or design-
ing a replica model with similar performance [58,69].
Extraction techniques. DL models can be stolen across
a wide range of attack surfaces covering various areas of
the DL system stack. For instance, an adversary can perform

prediction API attacks by obtaining predictions on input fea-
ture vectors to train a local substitute model [58,67,68], or a
side-channel attack by extracting information leakage from
Peripheral Component Interconnect Express (PCle) traffic.
Many works have demonstrated that system operation (i.e.,
timing, power usage, computation, cache) can be exploited
to infer the underlying operators of the DL model and used
to perform model extraction [24,25,63]. Based on MITRE
ATLAS (MA), attacks have different numbers of intermedi-
ate stages depending on their factics and their enabling tech-
niques [12]. (1) Initial Access, where the adversary prepares
the environment such as deploying spy kernels and monitor-
ing code [25, 69]. (2) Attack Staging, wherein preliminary
attacks are launched to gather DL model system and model
information [25]. (3) Exfiltration, primarily the deployment of
API attacks, potentially using previously gathered information
from attack staging. [42,63,69].

Model recreation. Recreation focuses on training a model,
either uninitialized or pre-trained, that provides an architec-
ture and weights [25, 67] with the intention of replicating a
target model by leveraging collected information leakage of
DL model characteristics. Extracted target model character-
istics can be acquired using a number of adversarial attacks,
such as a training set created from synthetic or ground truth
inputs paired with confidence values or labels gained from a
prediction APT attack [58,67,69]. It is feasible for sophisti-
cated approaches using side-channels to observe DL system
traffic to infer DL model characteristics [25, 63, 69]. Using
gathered metrics, GPU kernels mappings and inference inputs
and outputs enable the creation of a dataflow graph repre-
senting model architecture layout. The complexity of model
recreation can be vast due to the possible combinations of ML
frameworks, compute libraries, model architectures, among
other variables that can be partially and entirely unknown to
an adversary when attacking a DL system.

Consequence. Failure to defend against extraction attacks
can compromise the integrity, privacy and confidentiality of
the DL system. System integrity can be compromised dur-
ing attack preparation and execution, with the potential back-
doors created for future access [55]. Data privacy is degraded
via stolen model characteristics being exploited to stage fur-
ther attacks that extract training data information [21, 58].
Furthermore, the confidentiality of the DL model is compro-
mised since adversaries have access to model characteristics,
therefore allowing adversaries to reverse engineer and steal
confidential data, such as the training dataset.

2.3 Challenges in Extraction Attack Research

In model extraction literature, a number of studies have
demonstrated the feasibility and practicality of extraction at-
tacks against DL models [46, 58, 69]. However these studies
are predominately performed with isolated attacks targeting
one DL model characteristic, leveraging distinctive threat

models, and bespoke deployment scenarios with different DL
types [25,58,63, 68]. This is problematic given the evolving
DL landscape of extraction scenarios whereby current extrac-
tion attack implementations are obsolete when paired with
state-of-the-art DL types [37,59], and DL systems [32,44].

From extraction attack literature, it is observable that extrac-
tion attacks yield varying degrees of success when exposed
to different DL. model types and datasets [58, 69]. However,
current extraction attacks lack the generalizability required to
execute attacks across different extraction scenarios. Explor-
ing common associations is challenging due to the technical
effort required to conduct attacks across attack scenarios in
software and hardware heterogeneous DL systems. Under-
standing the associations attributed to DL types, datasets, and
deployment scenarios can greatly benefit the fundamental un-
derstanding towards varying extraction success observed in
literature [25, 58, 63, 68]. Therefore, given the vast amount
of deployment scenarios it is necessary to alleviate the lim-
itations present within current work, and further study the
common associations within extraction attacks across a multi-
tude of deployment scenarios, DL types, and datasets.

PINCH targets the capability of an efficient and automated
extraction attack framework able to deploy and evaluate DL
model security across heterogeneous DL systems and extrac-
tion attack scenarios with design goals of: (1) Generalizabil-
ity, providing a unified platform for the hardware and software
used in DL system deployments, and for the attacks that target
them. (2) Configuration & Automation, providing a machine
independent system to define an attack scenario and deploy it
for repeatable experimentation at scale.

3 Threat Model

The objective of a DL model is to map an input to a provided
classification. Given an input, the model propagates through
its operators to output a vector of probabilities denoting the
confidence of classification associated to the input. The threat
models underpinning extraction attacks in this paper are cat-
egorized into three aspects: Model knowledge, DL System
Environment knowledge and access to the Auxiliary dataset.
Model knowledge. We consider two access types observed
(M,) and hidden (M},). With observed knowledge, an adver-
sary has access to sufficient’ information of the target model
(architecture, parameters) to infer its model characteristics.
With hidden knowledge, adversary access is limited to API
calls to the target model (query, data output from model), with
attacks [18] assuming that the model architecture is already
known to construct a shadow model. Hidden knowledge en-
compasses scenarios whereby a target model is accessed via
external API calls commonly found in Machine Learning as a
Service (MLaaS). Observed knowledge encapsulates informa-

'We deliberately use the term "sufficient" as certain attacks only require
a limited sub-set of target model information to succeed.

tion leakage of target model characteristics via attacks such
as bus snooping, and side-channel.

DL system knowledge. Knowledge pertaining the DL sys-
tem environment is used to infer DL model characteristics.
Two types of knowledge are considered for the DL environ-
ment: partial (S,), and none (S,). Types denote the adver-
saries knowledge associated with the target DL environment
the target model is executing upon. This includes knowledge
regarding DL framework, GPU accelerators, and CPU devices.
Fartial knowledge of the environment enables an adversary
to have direct or indirect knowledge about the DL environ-
ment, for example, knowing the type of CPU (Intel, AMD),
or GPU (Nvidia, AMD). None states the adversary has no
information regarding the DL environment, and encompasses
scenarios whereby an adversary may have no, or not need any
knowledge about the DL system.

Auxiliary dataset. Depending on the type of attack, the
adversary may require an auxiliary dataset to perform their
attack. We consider two scenarios in decreasing order of
adversarial "strength": (1) Partial (D)) where an adversary
has some knowledge of target dataset and therefore can ob-
tain parts of the target dataset (e.g. via public knowledge, or
staging previous attacks). (2) No dataset (D,,) whereby the ad-
versary has no information regarding the dataset. We assume
the attacker has access to open source datasets commonly
provided by DL libraries or online repositories [13,39,65].

Overall scenarios. Considering the model knowledge, DL
environment knowledge, and auxiliary dataset a total of 8
distinctive threat models are possible. In the rest of the paper
we focus on two: (Mp, Sy, Dp), and (M,, S, D). As the
scenarios are tailored to extraction attacks 6 scenarios are
omitted due to their indifference to extraction success.

4 Extraction Attacks

4.1 KnockOffNets (KON)

KnockOffNets (KON) [46] is an inference attack whereby
an adversary undergoes inference upon a target model by
querying with a set of images randomly sampled from a query
set to steal target model parameters and recreate a stolen
model. All predictions made by the target model are combined
into a new stolen dataset containing the previously queried
images and stolen prediction confidence values or label pairs.
The stolen dataset is then used to reconstruct a new model via
a training recreation technique, in which an untrained model
of the same architecture as the target is trained on stolen
dataset until the desired similarity to the target is reached. The
adversary’s intention is for the stolen model to be equivalent
when compared to the target model within the targets task.
KON leverages the assumptions (M, S;,, Dp). The adver-
sary has hidden knowledge access to the target model while
being capable of performing inference requests with queries,
and does not assume any rate limiting or other inference coun-

termeasures associated with the target model. Inference ex-
traction attacks only use the API to access the DL target model
which is abstracted away from the underlying DL system,
meaning no DL system knowledge is required. The adversary
has partial auxiliary dataset knowledge about the underlying
target model architecture and training dataset used to therefore
establish a query set to be used during the attack.

4.2 DeepSniffer (DS)

DeepSniffer (DS) focuses on utilizing leaky information from
the GPU to infer target model architecture [25]. DS captures
4 kernel metrics during operator execution; execution time
(Exerq), read volume (Ry), write volume (Wy), and I/0 out-
put volume (Iy / Oy), to understand the relationship between
operators and variance of metrics. From this relationship, DS
can infer one of seven operators within a target model archi-
tecture; Conv, ReLU, BN, Pool, Concat, Add, and FC kernels
via a pre-trained DL model trained upon previous examples
leaked by the GPU, called the DS model. There are two attack
stages: (1) Attack Staging: Whereby DS gathers required GPU
metrics during target model execution. (2) Exfiltration: DS
uses the gathered data to undergo architecture prediction via
a previously trained DS model.

We make the following assumptions (M,, Sp, D;,): The
adversary observes knowledge about the target model via ar-
chitectural hints exposed within the GPU that the target model
is executing upon. We assume the adversary has partial knowl-
edge of the DL system, and the capability to access low level
system functionality including capturing stream of memory
and PCI metrics for CPU/Memory — GPU communication
of the target model to infer kernel metrics through GPU pro-
filing tools such as NVPROF [14]. Knowledge pertaining to
the target models ML framework is also considered due to
the attack staging requirements. Finally, the adversary must
be capable of performing inferences upon the target model.
Auxiliary dataset knowledge is not required as activating the
networks operators is the focus, not the models prediction, for
which data outside the auxiliary set can be used.

4.3 DeepRecon (DR)

DeepRecon (DR) [24] is a side-channel extraction attack that
gathers target model architecture information by using infor-
mation leakage from a device’s CPU L3 cache. DeepRecon ex-
tracts eight DL operators (Conv, MatMul, Softmax, Relu, Max-
Pool, AveragePool, Merge & Bias) by associating them with
symbols from the target model framework binary and identify
their execution by starting a co-located programme to monitor
L3 cache. In the case of a CPU attack, Flush+Reload [66]
is used to flush the CPUs L3 cache to observe which sym-
bols repopulate the cache on the assumption that frequently
occurring symbols belong to a target executing DL process.
Dimensional reduction techniques, such as Principle Com-

ponent Analysis (PCA), can then be used to cluster gathered
symbols during a model execution, making it possible for an
adversary to infer the architecture of a model by comparing
reduced dimensions to that of other known models.

DR leverages the assumptions (M,, S, Dy): The adver-
sary has observed model and partial DL system knowledge
whereby it is known that targeted systems are vulnerable
to Flush+Reload. Similarly to DeepRecon, auxiliary dataset
knowledge is not required. It is assumed that: (1) An adver-
sary is capable of launching co-located user-level processes
on the host of the target model. (2) The target and attacking
processes use the same DL framework binaries, to associate
symbols with DL operators. (3) The adversary knows which
CPU architecture is in use, as Flush+Reload is an Intel exploit.

4.4 MiFace (Inversion Attack)

To demonstrate the frameworks ability to enable further at-
tacks to be staged upon extracted models, we implemented
the MiFace model inversion attack by Fredrikson et al. [17].
Model inversion is a privacy violating attack whereby an
adversary with access to an inference API seeks to recon-
struct a representative example from each class within the DL
model. The consequence of such an attack is the ability for
images of trained classes within a model to be extracted. For
each class within the target model, the adversary performs
back-propagation over target model parameters to optimize
the input sample so that the corresponding class posterior
exceeds an established threshold. An input sample can be a
randomly generated image, or another initialization technique
denoted via an adversaries knowledge of the DL model.

Model inversion leverages the assumptions (Mp,, S;, Dp):
It is assumed that the adversary is targeting a model with hid-
den knowledge, requiring the capability to perform prediction
queries on feature vectors targeted by an adversary. As seen
previously in 4.2 and 4.3, no DL system environment knowl-
edge is required as model inversion uses the inference API
which provides abstraction from the DL systems software and
hardware. Furthermore, partial knowledge of model classes
is required: with a facial recognition model, the adversary
indirectly knows the model responds positively to faces, and
the adversary requires access to an auxiliary dataset providing
input initialization values.

S Framework Design

The objective of PINCH is to simplify and generalize the
process of executing adversarial attacks, facilitating the ex-
ploration of associations between attacks, DL. model charac-
teristics, and DL systems. The framework accomplishes this
by creating interfaces to standardize model inputs, data sets
and software environments, providing compatibility for the
execution of attacks. Additionally we enable readily repro-
ducible configuration and automation of attack scenarios to

Eiif:a‘:'li‘es 3 ik Virtual : :
-]]
& tools PROF| | DA Environments:2.7.3;

E . Model Dataset :
ooy e (e | (D BB
TN o *4 Attack [Input Attack ;
1|JSON * ::::}':r »m[mmﬁace Lorrectio Execution|

V4 A& V4 V4
GPU #1 GPU #2 GPU #3

Figure 2: Extraction framework system model and com-
ponents.

gather insights, with straightforward deployment into a DL
system without coding or complex build processes. Figure 2
depicts PINCH and its five components: Scheduler, Extrac-
tion Handler, Attack Interface, Model Manager, Results &
Metrics, and Repositories.

5.1 Components

User Interface. PINCH was designed for both Command
Line Interfaces (CLI) and Browser Interfaces (BI), and can
readily interface with established AI/ML/DL pipelines. Inter-
nally, extraction attack scenarios are stored as JSON objects
and are parsed to configure the module pipeline. Single or
multi-stage scenarios are passed to the attack function and
the results returned within 10 LoC in Python using the CLIL
The BI was implemented using a ReactJS front end and Flask
web server framework [54, 60], providing the same facilities
but with GUI features, such as drop-down attack scenario
configuration and generated results visualizations.

Extraction Handler. We implement the pipeline software
design pattern [6] by instantiating components required for an
attack scenario and having unidirectional data flow, with the
extraction handler being the pipeline orchestrator. Given large
datasets and models are I/O and memory intensive to load
and unload, the extraction handler requests the dataset and
model managers to begin loading resources from disk immedi-
ately when executed to reduce pipeline latency. Additionally,
software environments (libraries, frameworks, interpreters)
are preemptively created for a given attack to execute within,
either referencing software installed on the DL system, or
through the use of virtual environments. Alternative Python
library versions are created and accessed using venv [40],
creating lightweight site directories isolated from the default
system packages. Attacks with more complex dependencies
and build processes, such as DeepRecon, are assigned and run
in a containerized environment via docker.

Scheduler. We enable multiple attack scenarios to be ex-
ecuted concurrently on a DL system through a scheduler. A
heuristic method assesses the attacks, the currently available
resources (e.g. GPUs and memory), and decides whether the

attacks can be ran in parallel. Once agreed, the DL frame-
works are configured to use the assigned resources and attack
interfaces components instantiated for each attack. Parallel
compute time for KON is % with n GPUs installed in the DL
system, compared to linear execution. Side-channel snoop-
ing attacks are not run in parallel, as the operations of other
executing attacks (noise) may provide unsatisfactory results.

Attack Interface. The attack interface creates a valid input
configuration for executing a given attack scenario. As men-
tioned in Section 2.3, successful attack execution is highly
dependent on input data being syntactically correct. The at-
tack interface implements stub methods that manipulate the
attack input from intermediate representations to the standard
compatible for the attack depending on scenario. This pro-
tects from crash-stop failures caused by fragile input errors
regardless of extraction attack and model architecture. The
interface wraps the attack execution calls, recording queries
and responses or predicted architectures, and performs attack-
contextual evaluation e.g. calculating model extraction fidelity
and similarity methods [41].

Dataset Manager. Inefficient loading techniques in exist-
ing attack frameworks makes testing contemporary datasets
often exhaust system memory by attempting to load entire
datasets simultaneously. This was resolved by creating a
loader that automatically splits requested datasets into chunks
and loads them progressively into memory on demand, and by
limiting the retrieved dataset objects to the number of queries
set to execute, rather than the entire set.

Model Manager. The model manager fulfills requests by
attacks to load models, while providing for compatibility and
reduced user involvement. PINCH maintains a repository con-
sisting of online [11,39] and local DL models and their check-
point history. We built a server to serve models by framework,
architecture, stage of training and subsets trained classes, ad-
ditionally implementing automatic transfer learning capabili-
ties [70] to: (1) train variants of existing model architectures
with compatibility for new datasets, and 2) train models used
in attacks on targeted subsets of a models classes.

6 Experimental Setup

Experiments consisted of studying 21 state-of-the-art DL ar-
chitectures trained across four benchmark datasets, creating a
total of 92 target models. These target models were exposed
to three extraction attacks (see Section 4) and one model in-
version attack. Complying with threat models described in
Section 3, datasets are separated into an auxiliary and testing
sets for fidelity comparisons.

Using PINCH, target models and corresponding dataset
were automatically deployed into specific DL framework and
hardware devices (Section 6.1). Next, a configured extraction
attack was launched against the target model (Section 6.3)
and dataset (Section 6.2). On attack completion, we used our

framework to extract and collate results to analyze, research,
and study extraction attacks within Sections 7 and 8.

6.1 Hardware & Software Setup

Experiments were conducted on multiple hardware platforms.
KON - whose effectiveness is reported to be independent
of hardware device type — [46] was evaluated on a Nvidia
TESLA V100, and Intel Xeon Gold 5218. Extraction attacks
designed to target particular software and hardware device vul-
nerabilities (DS, DR) were studied across three Nvidia GPUs
(TESLA V100, GTX 1080, GTX 970) and three Intel CPUs
(15-3470, 17-4770 and i7-6850k). These devices were selected
to study extraction attack effectiveness when exposed to dif-
ferent hardware dimensions of GPU architecture (Maxwell,
Pascal, Tesla), GPU Compute schedule capability, CPU gener-
ation (3rd, 4th, 6th) and CPU cache size (6MB, 8MB, 15MB).
All experiments used Ubuntu 20.04.2 with CUDA 11.3, and
were performed on ML frameworks PyTorch 1.11.0, and Ten-
sorFlow 1.10.0/2.10.0.

6.2 Datasets

Experiments leveraged four datasets selected based on their
complexity (class size, image size, number of channels), and
their observed impact upon API-based extraction attack on
inference models [36]. Datasets include:

MNIST. [34] 60,000 training and 10,000 test greyscale
images with 28x28 input size and 10 classes. Images contain
white hand—written numbers on a black background.

CIFAR100. [33] 50,000 training and 10,000 test colored
images with a 32x32 input size and 100 classes. Images rep-
resent photos of animals, buildings, and vehicles.

CelebA. [65] 200,000 celebrity face greyscale images with
an 218x178 input size, associated with 40 attributes. We se-
lected 10 faces out of 10,177 identities, as inclusion of this
dataset is focused on investigating further attack staging de-
scribed in Section 7.4.

ImageNet. [13] 14 million colored images with an
224x224 input size and 1000 classes. In our experiments,
we used a subset of ImageNet providing 80,000 training and
20,000 test images (which we simply refer to as ImageNet).

Two types of datasets are used to undergo and evaluate ex-
traction attack effectiveness. (1) Query dataset: A collection
of inputs that an adversary can use to extract stolen classified
labels from a target model. The query dataset size represents
the amount of queries an adversary can perform. (2) Test-
ing dataset: Used to evaluate extraction fidelity of the stolen
model compared to the target model. Test sets are derived
from the selected dataset test images, and thus are related to
the target model trained dataset.

6.3 Target Models

Our study utilizes 21 DL model architectures ” across three
data sets described in Section 6.2, with the exception of
CelebA dedicated to exploring the impact of further attack
staging. Architectures selected for evaluation were chosen
based on diversity of parameter size, model family, commonal-
ity within extraction literature, and also includes more modern
models such as ConvNext, RegNet, and ViTB16 [15,37,50].

Target models were acquired via online repositories or
trained locally. Online target models were sourced from
TorchVision for KON and DS [39], or Keras for DR [11],
which provide pre-trained ImageNet weights upon a given
architecture. MNIST and CIFAR target models were trained
via a transfer learning approach where pre-trained ImageNet
models were re-trained to learn the new dataset. Training
was performed with mini-batch size set to 10, and a cross-
entropy loss function with a learning rate of 0.01 using a v100
GPU [44]. Target models were trained for 3 and 40 epochs for
MNIST and CIFAR, respectively following similar training
models in literature [33, 34].

6.4 Extraction Attacks

KnockOffNets (KON). We used MNIST, CIFAR100, and
ImageNet as query datasets for target models. Stolen model
training leveraged identical training setup in Section 6.3 with
epochs set to 10, 20, and 100 for MNIST, CIFAR, and Ima-
geNet, respectively and were selected due to differences in
dataset complexity and success indifference [36]. The number
of maximum queries for each attack relates to the training set
size or is chosen due to overfitting with indifferent success,
therefore the only reduced dataset was MNIST which used
10,000 queries, while CIFAR, and ImageNet both used their
maximum training size. For the purposes of generalization, all
query dataset input image sizes were transformed to 224x224.
We also investigated the impact of dataset class sizes by ran-
domly selecting classes available from the dataset to create
smaller subsets which were trained across all architectures.

DeepSniffer (DS). Kernel metrics were collected using
NVPROF to profile a model during a single inference sim-
ilarly to Hu et al. [25]. Each target model was extracted
25 times to measure variation in extraction success across
runs and then additionally repeated across all evaluated GPUs
(GTX 970, GTX 1080, Tesla V100). This collectively totals
750 results for running DS across the system.

DeepRecon (DR). Target models were deployed within
two containerized software environments. The first, identical
to [24], was configured to perform 10 inferences each on 10
models, accounting for stochastic interference from the oper-
ating system. When inference begins, symbol extraction starts,
and the detected symbols collected. Each model performed
10 inferences 100 times, totaling 10,000 results across per

2 Appendix Table A.2 details the full model types and configurations.

CIFAR100

ImageNet

Figure 3: KnockOffNets extraction results. Extraction suc-
cess across architectures and datasets. CSG: MNIST (7.54),
CIFAR100 (79.67), ImageNet (648.99).

machine. Thresholds of 200 (default) were reported for all
runs, as alternative thresholds (mean value using the Mastik
FR-threshold function) were found to have no impact upon
results. Outlined in Section 4.3, PCA was used to fingerprint
the models, by using computed components to train and eval-
uate a KNN-classifier to classify the model architecture, and
family from a given symbol result set. A model’s depth and
architecture could be predicted (an exact classification), but
the predicted model family was also recorded (family classifi-
cation). The second environment ran a version of DeepRecon
compatible with TensorFlow 2.10, allowing more models to
be tested. Certain cache symbols, specifically MatMul, were
found to not be compatible with TF 2.10, though were not
replaced to avoid modifying the attack.

6.5 Evaluation metrics

Attack success. Extraction fidelity is a metric is widely used
within extraction literature [46, 58] to measure attack success,
whereby the characteristics of the stolen and original model
are directly compared by using the Topl-accuracy of pre-
dicted classified labels (KON) or architecture prediction (DS).
Additional metrics of relevance collected including number
of queries (KON) and model accuracy.

Complexity Measurement. To study the relationship be-
tween adversarial attack and target model complexity, we
utilize two different techniques to quantify dataset and model
architecture complexity. Dataset complexity was measured
using Cumulative Spectral Gradient (CSG) [5] that projects
extracted dataset features into lower dimensions and calcu-
lates class overlap using a Monte-Carlo method, capturing
dataset separability, with higher values denoting higher com-
plexity. Architecture complexity was measured by multiply-
add (MAdd) [56], a technique whereby the total number of
multiplication operations is computed via operator feature
maps sizes within the DL model.

DenseNet VGG

1.0
£oe
So.a
iL 0.2
0.0

25 Vs Ve O 25 Y

"e 6} 6‘3 W Yo Ve

ResNet DenseNet VGG ResNet

@

2 Yo

o Yo Yo b b Yo b W 9
\-’es“,egeooovo

(a) KnockOffNets (b) DeepSniffer

Figure 4: Architecture family depth comparison. Fidelity
variance with models of different depths/parameters using
same model architecture family.

7 Extraction Attack Evaluation

7.1 KnockOffNets (KON)

KON exhibited varying success across different target
model and dataset combinations as shown in Figure 3, with
DenseNet161 achieving highest overall success in MNIST
(0.95), CIFAR100 (0.52) and ImageNet (0.29). We identified
multiple influences on attack success from model architecture,
dataset complexity, class size, and number of queries.
Model architecture. We observed that target models
(AlexNet, DenseNet161, VGG16) leveraging more conven-
tional CNN architecture achieved higher success. In contrast,
state-of-the-art target model architectures (ConvNeXt Small,
ViTB16, RegNetY-400MF) reported lower success, with the
transformer model ViTB16 exhibiting the lowest fidelity (0.0
—0.18). As shown in Figure 4a, we determined that the num-
ber of architecture layers for target model family had minor
impact, with minimal variation in extraction fidelity across
families. Such architectures exhibit exceedingly complex high
amount of trainable parameters and MAdd (Table A.1). There-
fore, successfully extracting target models via attacks requir-
ing exact architecture knowledge (such as KON) are increas-
ingly difficult for models with large training requirements
(queries and time). Such findings indicate that using com-
plex architectures can intrinsically hinder adversary success
without considerable effort, similarly to security methods that
attempt to exceed adversary effort as a deterrent [64].
Dataset complexity. Target models using MNIST exhib-
ited the highest attack success, with multiple architectures
reporting over 0.9 fidelity, whereas ImageNet indicated the
lowest attack success between 0.03 — 0.29 (Figure 3). The rea-
son for such results is due to dataset complexity [36], whereby
MNIST is least complex dataset (CSG value of 7.54) in com-
parison to ImageNet (CSG value 648.99). Increased dataset
complexity results in more difficult class generalization and
higher likelihood of overfitting [36]. Figure 5 demonstrates
the impact of dataset class size on attack effectiveness. For
instance, increasing ImageNet class size with DenseNet161
from 10 to 1000 resulted in reduced attack success from 0.41
to 0.29. Figure 6a and 6¢ depict that smaller class sizes pro-
duce higher fidelity with less queries, and additionally show
that fidelity of CIFAR100 is fixed when a model is converged.

10 Cl 50 ClI 100 ClI

(a) CIFAR100, 50,000 Queries
10 Cl 500 CI 1000 CI

(b) ImageNet, 80,000 Queries

Figure 5: Varying class sizes for KnockOffNets attack.
Datasets were reduced to a given class size and were trained
via transfer learning.

Intuitively, smaller class size results in reduced dataset com-
plexity, thus allowing a model to generalize faster with less
data to achieve higher extraction success.

Query number. As provided in Figure 3, we found across
all target models, the number of queries launched [10,000,
50,000, 80,000] for MNIST, CIFAR100, and ImageNet, re-
spectively exhibited the highest impact on attack success
whereby datasets of less complexity are stolen quicker. Given
the training recreation technique used within KON, whereby
more training data would lead (in moderation) to higher suc-
cess due to greater learning generalization and diversity of
data as shown in Figure 6b, also reported in [36]. Architec-
tures and datasets of higher complexities, such as ConvNeXt
upon ImageNet, require larger amount of queries for adequate
extraction success.

7.2 DeepSniffer (DS)

DS also exhibited varying attack success across all evalu-
ated architectures and DL environments. Across GPU de-
vices, Densenet161 achieved the highest success for GTX
970 (0.71) and GTX 1080 (0.78), and ResNet18 within Tesla
V100 (0.71). We determined that extraction attack success
was influenced by three main factors; model architecture, ML
framework, and GPU environment.

Model architecture. As shown in Figure 7, we observed
that DS achieved consistently achieved high attack success
across evaluated model architectures. We discovered that
DS was ineffective when applied to newer models (Con-
vNeXt, RegNet, ViTB16) due to including operators and net-

0.5
— 10 25 — 50 — 100 250 500 1000

0.4
E 0.3
S0z
iL 0.1

0.0

1] 20000 40000 60000 80000
Queries
(a) Class size (VGG16, ImageNet)

0.20 0.5
2o 3.0"
b =03
% 0.10 % 0.2
i 0.05 iC o1

— 10 50 — 100
0-00 20000 40000 60000 80000 10000 20000 30000 40000 50000
Queries Queries
(b) Models (c) Class size (VGG16,
(1000 classes) CIFAR100)

Figure 6: Varying query amounts. KnockOffNets extrac-
tion upon ImageNet and Cifar100 across DL model architec-
tures, various class sizes, and query amounts.

work designs not found within conventional evaluated models
(ResNet, VGG, etc) [15,37,50]. ConvNeXt and ViTB16 both
implement Gausesian Error Linear Units (GELU) as replace-
ments to widely used Rectified Linear Units (ReLU) [22].
ViTB16 additionally uses Transformer specific operators [59],
and RegNet introduces a completely new network design
paradigm [50]. As such, these new operators and architectural
approaches cannot be transformed into dimensions recognized
within DS (see Section 4.2) which only capture standard oper-
ators within CNNs [25], limiting attack effectiveness for more
sophisticated architectures. Moreover, Figure 4b demonstrates
that deeper models (models with more layers) within the same
family resulted in reduced fidelity for VGG and Resnet fami-
lies, since models of increasing depth include more operators
and increased likelihood of layer mis-classification.

ML framework. We found DS was ineffective for DL
models using TensorFlow irrespective of target model archi-
tecture. From analyzing gathered profiled data across Py-
torch and TensorFlow frameworks, TensorFlow generated
additional kernel calls not seen within PyTorch. Thus, the
increased size of profiled data results in the trained DS clas-
sifier predicting an architecture length greater than expected.
The existence of such noise can be attributed to low-level
framework-level optimizations when kernels execute in com-
parison to PyTorch. This finding indicates that DS is frame-
work specific, and thus requires training on different frame-
works to generalize extraction, and further threat model refine-
ment to enable adversary knowledge of the system framework
(Table A.4).

GPU architecture. As shown in Figure 7, we observed
substantive variance in attack success across architectures for
different GPUs, with GTX 970, and GTX 1080 exhibiting
similar trends with slight variation. Across all GPUs, we ob-

GTX 970

GTX 1080 TESLA V100

Figure 7: DeepSniffer extraction results across GPU de-
vices and various ImageNet DL architectures.

i5-3470
EEE Exact Accuracy
EZZ Family Accuracy

i7-3770k

o, 0 0 b % R %
S, S, S, 8, 8,

M, P, %5, e %,,s RN

oy oty oy 2 5 0
< % %

cd
Figure 8: DeepRecon model architecture & family pre-
diction. Classifying model family was more successful in
comparison to target model classification, due to similar clus-
tering properties.

served clear DS attack ineffectiveness when targeting newer
state-of-the-art models (ConvNeXt, RegNet, ViTB16). Of
particular interest, RegNetY-400MF, ConvNeXt Small and
ConvNeXt Large exhibited low attack success across devices
(0.12 - 0.20) and failing to extract for RegNetY-400MF. Such
phenomena indicates that architecture attack susceptibility
to DS is strongly affected by the GPU device. These archi-
tectural differences affect the information leakage gathered
by NVPROF, with optimizations and floating-point precision
varying between GPUs causing recorded kernel metrics (exe-
cution duration, read, write amounts) to change.

7.3 DeepRecon (DR)

DR demonstrated varying success across hardware platforms
evaluated as shown in Figure 8. Primarily exploring Ten-
sorFlow 1.10, DenseNet (0.835) and VGG (0.766) architec-
tures exhibited high family prediction success on all hardware
tested (Figure 8), with other families showing a preference
for a given CPU (AlexNet: i17-4770, MobileNet: 6850k). We
noticed less distinct patterns of success across model archi-
tectures of varying depths, e.g. DenseNet depth 161 broadly
being classified less accurately than 121 and 201 (Figure 8).

i7-3770k i7-4770 i7-6850k

i5-3470

“
! :
£
o % ’
L VI 00 i g
g Kn B .,
- oo
X % X X PR ©a o6 6z 61 00 o1 oz
D 121 D 201 ResNet101 VGG16) MobileNetVv2
161 ResNet152 VGG19 AlexNet
(a) TensorFlow 1.10
i5 3470 i7 37’70 i7 4770 i7 6850k
: § ' -
s &
5 : Gt .
A‘g"-é&a;w o] AR
? - 2w -
2 S ~
T m P Aot
B il ~ »
&

00 03 0.6 0.00 0.25 0.50 0.5 g s To *%s0 -0z 0.00 0.25
AlexNet DenseNet169 ResNet101 ResNet50
ConvNeXtLarge DenseNet201 ResNet152 VGG16
C il V2 ResNet18 VGG19

DenseNet121 RegNetY320 ResNet34 ViTB16

(b) TensorFlow 2.10

Figure 9: Principle component analysis (PCA) for 26,000
inferences using DeepRecon across 16 models, 4 CPUs
and 2 TensorFlow releases. Clustering denotes models with
similar proportions of cached operators, clearer clustering in-
dicating similar caching behavior. PCA was used to reduce 8
detected symbols for each inference into 2 dimensions.

CPU architecture. We observed that higher performance
CPUs were more vulnerable to DR, with i7-6850k achieving
the highest average family classification accuracy (0.836), and
15-3470 lowest (0.316). We attribute this to cache policies and
older CPUs being less responsive to timings of Flush+Reload—
e.g. 15-3470 generating large but disparate symbol logs lead-
ing to a disturbed PCA result (Figure 92a). Higher performance
CPUs (i7-3770k, 17-4770, 17-6850k) reported a higher effec-
tiveness in fingerprinting and classification across model fam-
ilies compared to 15-3470. This is further reinforced in Figure
8, with the i15-3470, 17-4770, and i7-6850k averaging 0.316,
0.495, 0.661, and 0.836 across all model families respectively.
Findings show cache size does not influence results, as Hong
et al. [24] evaluated with a Gen4. 4MB CPU successfully,
smaller than our i5-3470 (Gen3, 6MB).

Model architecture & family. As shown in Figure 9, we
observed target models within model families with distinct
operator traits (ResNet; residual operators, DenseNet; dense
blocks) successfully fingerprinted, but overlapped with other
family members. This is shown further when models were
often misclassified individually but with high success within
a family. Across all machines, DenseNet exact classification
never exceeded 0.518 for any depth (121: 0.518, 161: 0.307,
201: 0.426), but by family averaged 0.835, similarly seen in
VGG (Table A.3). This indicates that families with homo-
geneous operators built strong fingerprints, but using this to
train classifiers for specific depths is insufficient.

TensorFlow framework TensorFlow 2.10 displayed a gen-

10

1.0
0.8
0.6
0.4
0.2
0.0,

J———

-
—— Fidelity —— PWCCA

2000 4000 6000 8000 10000

(a) MNIST PWCCA vs Fidelity (b) CelebA PWCCA vs Fidelity

PWCCA / Fidelity
cocooor
oONDO®O

10000 20000 30000

a333333333

Q100 Q250 Q500 Q750 | Qio00 | Q2500 | @s000 | Qo000 | Target | Original

(c) Inversion Results (CelebA (Top), MNIST (Bottom))

Figure 10: Model inversion upon stolen models. Using
stolen models from KON across varying query amounts (Q,;,)
evaluated against target model, and original image.

eral decrease in exact and family classification accuracy
across 15-3470, i7-4770 & 17-6850k systems and models,
which we attribute to the missing MatMul operator decreas-
ing the reducible dimensions for component analysis. Con-
versely, 17-3770k performed unexpectedly well compared to
other systems, and demonstrated high accuracy on ConvNeXt
Small/Large, RegNetY320, and ViTB16 (Appendix 13).

7.4 Adversarial Attack Staging

Extraction attacks have been identified as a means to stage
further adversarial attacks [25, 62, 69]. Using PINCH, we
conduct a case study whereby an adversary uses an extraction
attack to stage a further model inversion attack.

Scenario setup. Two target models; a 3-layer and 4-layer
model architecture for MNIST and CelebA, respectively, were
stolen by KON. The subsequent shadow model is then ex-
posed to a model inversion attack MiFace [17], whereby
model information is used to generate images representative
of target model classes. The MiFace attack was performed
on the shadow model at various query requests for MNIST
[100 — 10000] and CelebA [1000 — 35000] to evaluate MiFace
attack success at different stolen model fidelity. Following
the threat model in Section 3 the adversary has access to an
auxiliary dataset, and partial knowledge of the target model.
Thus images representative of model classes; written numbers
for MNIST and random faces for CelebA, are used for image
initialization [17,21]. MiFace attack success when applied to
a stolen model was evaluated by comparing generated images
against images generated by the target model.

Inversion success. Observing results from Figure 10, it is
apparent that even partial extraction success (0.83, 0.95) can
result in successful model inversion exhibiting similar gener-
ated features comparable to the target. Specially, class features
such as shape are captured to a high degree of accuracy. For

example, CelebA successfully captured dataset specific fea-
tures face shape, eye and mouth positioning inline with the
actual image of the class. These captured features enable the
adversary to gain additional knowledge about the target mod-
els, and therefore exploit this knowledge to further augment
the model inversion attack, or repeat extraction with a more
tuned query set. Dataset complexity also affects inversion
success. A less complex dataset such as MNIST shows highly
similar images, whereas CelebA — a more complex dataset —
introduces more noise due to more granular greyscale and the
image containing more distinctive features [34, 65].
Extraction sensitivity. Additionally, we demonstrate Mi-
Face upon stolen models of varying query amounts and high-
light that successful inversion occurs with low query amounts
and fidelity varying on dataset complexity (Figure 10c). We
observed that both datasets begin to show class features early
with MNIST establishing a clear shape with 500 queries and
similarly CelebA at 10,000 queries. Interestingly, we see that
the fidelity of the CelebA stolen model shows signs of conver-
gence with over 25,000 queries, however displays different
model inversion results despite no increase in fidelity.
Architecture similarity. To further investigate the similar-
ity between target and stolen models, we applied Projection
Weighted Canonical Correlation Analysis (PWCCA) [41]
that measures similarity by calculating the distance between
the activation layers of two models during inference (Figure
10a and 10b). We observed that increasing query amounts
for MNIST resulted in higher fidelity and PWCCA distance
to decrease, denoting high similarity. CelebA also follows
this trend until 15,000 queries where the PWCCA distance
was at its lowest, however additional query amounts increase
the PWCCA distance despite fidelity increasing. This is due
to training being a high dimensional optimization problem,
whereby their exists high numbers of Local Optimum that
can achieve similar fidelity and accuracy due to outputs have
similar [2]. These local optimum can have large parameter
space between them, thus exhibiting a high PWCCA distance.

8 Discussion

8.1 Key Extraction Characteristics

Within our evaluation in Section 7 we have identified multiple
characteristics influencing attack success, each exhibiting a
particular affinity for specific attacks (e.g. dataset complex-
ity for KON, hardware for DR). We determined that differ-
ences within model architecture directly altered success of
all attacks. As such, it is apparent that DL models appear
to exhibit different resistance against certain attacks based
on their model architecture characteristics. We suspect this
phenomena also exists for other types of adversarial attacks.
Further study of this finding would allow researchers to more
effectively study and explain commonalities between adver-
sarial attacks within complex networked systems and provide

11

ResNet18- Target VGG16- Target

AlexNet- Target
\:\~§\'R_.\~ .

10° 10T 10° 107

Noise
— 1 4 — 7 10 13 16 19
e 2 —— 5 - 8 11 14 17 20
3 ---—- 6 9 12 15 18 — 21

Figure 11: Layer sensitivity to noise. Each line represents
the sensitivity of a CIFAR100 model layer to increasing mag-
nitudes of noise, highlighting its expressive power.

practitioners the ability to focus engineering effort (valida-
tion, countermeasures, design) to secure DL models against
attacks with the highest likelihood of success based on their
architectural characteristics.

8.2 Further Attack Staging

From conducting experiments, we observed that even with
stolen models acquired from partially successful extraction
attacks can be leveraged to stage further adversarial attacks
such as model inversion to attain reasonable levels of success
(0.7+ fidelity). Less complex datasets such as MNIST are
considerably less noisy compared to more complex datasets
such as CelebA. However defined features can still be ex-
tracted by the inversion attack such as face shape, and gender
(Figure 10). The ability to extract such features is especially
concerning given the privacy related issues associated with
specific types of models such as facial recognition, which
allow an adversary to reverse engineer the classes to generate
and expose images associated with real world people [17,21].
This highlights that underlying hidden knowledge present
within DL models can be extracted from stolen models, and
therefore adversarial attack staging must be studied further.

8.3 Extraction Equivalency

Fidelity vs PWCCA. We observe that due to the high dimen-
sional optimization problem existing in training networks,
Fidelity and PWCCA can contrast between each other due
to the existence of many local optimum (See Section 7.4).
Despite not being exactly equivalent to their targets, stolen
models still contain concerning information originating from
the target model. This implicates that a new measurement of

< 0.8
Yo.6
S0.4
80.2

0.0

I

0 3 6 9 12 15 18 1 2 3 45 6 70 2 4 6 8101214
Layer
(a) Original Models
1.0
<0.8
0.4
Eo.z
0.0 1 2 3 4 1 2 3 40 1 2 3 4
Layer
==== ResNetl8 ==== AlexNet === VGG16 Baseline
(b) Distilled Models

Figure 12: Knowledge distillation upon stolen models.

PWCCA distance comparison of target and stolen models
across ResNet18, AlexNet, and VGG16 further distilled into
a 5 layer CNN [23]. Baselines computed by comparing target
models with an identically trained model.

similarity is required to better understand the success of ad-
versarial attacks, and further the creation of countermeasures.

Expressive power of models. We analyzed the expressive-
ness of the target and stolen model to investigate the layer
sensitivity to noise by utilizing the method proposed in [51].
We compared the sensitivity of the target and stolen model
to increasing magnitudes of noise to explore if the same lay-
ers of these two models exhibit the same pattern in accuracy
degradation (Figure 11). Similarly to the findings within the
proposed method, stolen models hold true to the statement
trained networks are more sensitive to their lower (initial)
layer weights, as earlier layers in stolen models were also most
sensitive. Additionally, target and stolen models exhibit dif-
ferent sensitivity to noise across the majority of layers within
the network, highlighting how fundamentally the models have
learned differently to each other. Further understanding the
difference in expressiveness would benefit the development of
adversarial defences and secure DL models by providing fore-
sight into how stolen models adapt target model knowledge
into their own expressive structure.

Knowledge capture We explored how much similar
knowledge a stolen model captured from a target model.
Knowledge Distillation (KD) [23] was used to transfer the ex-
tracted knowledge of the target and stolen models into small
distilled models, and then PWCCA is exploited to measure
the representation similarities of these distilled models. Our
experimental results indicate that similar captured knowledge
exists between the target and stolen models. As shown in
Figure 12, we distilled the target and stolen model of 3 DNNs
into smaller 5 layer CNNs, achieving accuracy’s stated in
Table A.5. The PWCCA distance of the distilled models in
Figure 12b is drastically lower compared to the original mod-
els in Figure 12a, indicating that stolen models are capable of
capturing knowledge contained within a target model despite
being expressively different (Figure 11).

12

9 Related Work

There is a growing body of research dedicated towards the
study of adversarial attacks against DL model architectures
and datasets within DL systems [1] [7] [8] [28] [38] [49] [52].

Extraction attack studies. Tramer et al. [58] introduced
the first extraction attack to extract target ML models ex-
posed in online prediction APIs. Papernot et al. [47] proposed
an avatar approach to extract a substitute DNN model for
the purpose of generating adversarial examples. Different
from [47], Joon et al. [45] designed an avatar based approach
to train a meta-model to predict model hyperparameters. Junti
et al. [31] developed a generic method for extracting DNN
models by optimizing training hyperparameters and generat-
ing synthetic queries. Orekondy et al. [46] proposed a rein-
forcement learning based framework to improve query sample
efficiency and performance. Hua et al. [26] first studied on
reverse engineering of CNN on hardware accelerators, and
investigated potential vulnerabilities in CNN accelerators in
the context of model stealing. Wang et al. [61] provided hy-
perparameter stealing attacks to DL models.

Adversarial attack frameworks. Hussain er al. [29] pre-
sented a library allowing for black-box and label-only extrac-
tion, inference and inversion attacks on DL models. As an
extended work of [29], Nicolae et al. [43] developed a more
feature-rich library for evaluating and defending ML models
to extraction, inference, inversion and poisoning attacks. Chen
et al. [10] designed a Frank-Wolfe algorithm-based adversar-
ial attack framework for white-box and black-box settings.
Pearce et al. [48] provided a generic automation tool for test-
ing the security of ML. Liu et al. [36] proposed a holistic risk
assessment of different inference attacks against ML models
and established a threat model taxonomy. In contrast to these
works, we propose an end-to-end automated extraction attack
framework capable of conducting an in-depth evaluation of
extraction attacks across various operational scenarios and
heterogeneous hardware platforms.

10 Conclusion

In this paper we have conducted an extensive empirical exper-
imentation of extraction attack scenarios. Utilizing PINCH to
rapidly design, deploy, and analyze a large number of extrac-
tion attack scenarios not yet captured in current literature, we
have conducted a detailed study of extraction effectiveness
against different DL system environments. We identify key
insights into the fundamental understanding of adversarial
security: We have (1) uncovered key extraction character-
istics whereby specific model configurations exhibit strong
resilience to specific attacks; (2) stolen models exhibit equiv-
alent functionality with fundamentally different model char-
acteristics and expressive power; and (3) demonstrated even
partial extraction success enables staging of further privacy
concerning adversarial attacks.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Naveed Akhtar and Ajmal Mian. Threat of adversarial
attacks on deep learning in computer vision: A survey.
leee Access, 6:14410-14430, 2018.

Zeyuan Allen-Zhu. Natasha 2: Faster non-convex op-
timization than sgd. Advances in neural information
processing systems, 31, 2018.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim érndié, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learn-
ing at test time. In Joint European conference on ma-
chine learning and knowledge discovery in databases
(ECML PKDD), pages 387—402. Springer, 2013.

Battista Biggio and Fabio Roli. Wild patterns: Ten years
after the rise of adversarial machine learning. Pattern
Recognition, 84:317-331, Dec 2018.

Frederic Branchaud-Charron, Andrew Achkar, and
Pierre-Marc Jodoin. Spectral metric for dataset complex-
ity assessment. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Frank Buschmann, Regine Meunier, Hans Rohnert, Pe-
ter Sommerlad, Michael Stal, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture,
Volume 1, A System of Patterns, volume 1. John Wiley
& Sons New York, 1996.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anu-
pam Chattopadhyay, and Debdeep Mukhopadhyay. Ad-
versarial attacks and defences: A survey. arXiv preprint
arXiv:1810.00069, 2018.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anu-
pam Chattopadhyay, and Debdeep Mukhopadhyay. A
survey on adversarial attacks and defences. CAAI Trans-
actions on Intelligence Technology, 6(1):25-45, 2021.

Varun Chandrasekaran, Kamalika Chaudhuri, Irene Gi-
acomelli, Somesh Jha, and Songbai Yan. Exploring
connections between active learning and model extrac-
tion. In USENIX Security Symposium, pages 1309-1326.
USENIX Association, 2020.

Jinghui Chen, Dongruo Zhou, Jinfeng Yi, and Quanquan
Gu. A frank-wolfe framework for efficient and effective
adversarial attacks. In AAAI conference on artificial
intelligence, volume 34, pages 3486-3494, 2020.

Frangois Chollet. Keras: The python deep learning
library. Astrophysics source code library, pages ascl—
1806, 2018.

13

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

The MITRE Corporation. MITRE ATLAS Adversarial
Attack Knowledge Base, 2022. [Online; accessed 05-
Sept-2022].

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE conference on computer vision
and pattern recognition (CVPR), pages 248-255. leee,
2009.

NVIDIA Developer Documentation. Cuda toolkit pro-
filer documentation, May 2022. [Online; accessed 05-
Sept-2022].

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

Vasisht Duddu, Debasis Samanta, D Vijay Rao, and
Valentina E Balas. Stealing neural networks via tim-
ing side channels. arXiv preprint arXiv:1812.11720,
2018.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In ACM SIGSAC
conference on computer and communications security
(CCS), pages 1322-1333, 2015.

Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and
Nikita Borisov. Property inference attacks on fully con-
nected neural networks using permutation invariant rep-
resentations. In ACM SIGSAC conference on computer
and communications security (CCS), pages 619-633,
2018.

Priya Goyal, Piotr Dollér, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian
Sun. Deep residual learning for image recognition. In
IEEE conference on computer vision and pattern recog-
nition ((CVPR)), pages 770-778, 2016.

Zecheng He, Tianwei Zhang, and Ruby B. Lee. Model
inversion attacks against collaborative inference. In An-
nual Computer Security Applications Conference (AC-
SAC), page 148-162. Association for Computing Ma-
chinery, 2019.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus), 2016.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Sanghyun Hong, Michael Davinroy, Yigitcan Kaya, Stu-
art Nevans Locke, Ian Rackow, Kevin Kulda, Dana
Dachman-Soled, and Tudor Dumitras. Security anal-
ysis of deep neural networks operating in the pres-
ence of cache side-channel attacks. arXiv preprint
arXiv:1810.03487, 2018.

Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei
Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang Liu, Tim-
othy Sherwood, and Yuan Xie. Deepsniffer: A dnn
model extraction framework based on learning archi-
tectural hints. In Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), page 385-399, 2020.

Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse
engineering convolutional neural networks through side-
channel information leaks. In ACM/ESDA/IEEE Design
Automation Conference (DAC), pages 1-6, 2018.

Ling Huang, Anthony D. Joseph, Blaine Nelson, Ben-
jamin LP. Rubinstein, and J. D. Tygar. Adversarial
machine learning. In ACM Workshop on Security and
Artificial Intelligence (AlSec), page 43-58, 2011.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan
Duan, and Pieter Abbeel. Adversarial attacks on neu-
ral network policies. arXiv preprint arXiv:1702.02284,
2017.

Suha Hussain, Philip Wang, and Jim Miller. Priva-
cyraven: Comprehensive privacy testing for deep learn-
ing, 2020.

Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High accuracy and
high fidelity extraction of neural networks. In USENIX
security symposium, pages 1345-1362, 2020.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and
N Asokan. Prada: protecting against dnn model stealing
attacks. In IEEE European Symposium on Security and
Privacy (EuroS&P), pages 512-527. IEEE, 2019.

Ben Keller, Rangharajan Venkatesan, Steve Dai,
Stephen G. Tell, Brian Zimmer, William J. Dally,
C. Thomas Gray, and Brucek Khailany. Deep learning
inference accelerator with per-vector scaled 4-bit quan-
tization for transformers in Snm. In IEEE Symposium
on VLSI Technology and Circuits (VLSI Technology and
Circuits), pages 16-17, 2022.

14

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images. pages 32—33,
2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278-2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436-444, 2015.

Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun
Zhang, and Michael Backes. ML-Doctor: Holistic risk
assessment of inference attacks against machine learn-
ing models. In USENIX Security Symposium, 2022.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Fe-
ichtenhofer, Trevor Darrell, and Saining Xie. A convnet
for the 2020s. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 11976—
11986, 2022.

Nag Mani, Melody Moh, and Teng-Sheng Moh. De-
fending deep learning models against adversarial attacks.
International Journal of Software Science and Compu-
tational Intelligence, 13(1):72-89, 2021.

Sébastien Marcel and Yann Rodriguez. Torchvision the
machine-vision package of torch. In ACM International
Conference on Multimedia (MM), page 1485—1488. As-
sociation for Computing Machinery, 2010.

Carl Meyer. Python Enhancement Proposal 405 —
Python Virtual Environments, 2011. [Online; accessed
05-Sept-2022].

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights
on representational similarity in neural networks with
canonical correlation. Advances in Neural Information
Processing Systems, 31, 2018.

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian,
and Nael Abu-Ghazaleh. Rendered insecure: Gpu side
channel attacks are practical. In ACM SIGSAC confer-
ence on computer and communications security (CCS),
pages 2139-2153, 2018.

Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc
Tran, Beat Buesser, Ambrish Rawat, Martin Wistuba,
Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen,
Heiko Ludwig, et al. Adversarial robustness toolbox v1.
0.0. arXiv preprint arXiv:1807.01069, 2018.

NVIDIA. Nvidia v100, Dec 2017. [Online; accessed
05-Sept-2022].

Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards
reverse-engineering black-box neural networks. In Ex-
plainable Al: Interpreting, Explaining and Visualizing
Deep Learning, pages 121-144. Springer, 2019.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box mod-
els. In IEEE/CVF conference on computer vision and
pattern recognition (CVPR), pages 4954-4963, 2019.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
ACM Asia conference on computer and communications

security (AsiaCCS), pages 506-519, 2017.

Will Pearce and Ram Kumar Shankar Siva. Ai security
risk assessment using counterfit, 2021.

Han Qiu, Tian Dong, Tianwei Zhang, Jialiang Lu, Ger-
ard Memmi, and Meikang Qiu. Adversarial attacks
against network intrusion detection in iot systems. /IEEE
Internet of Things Journal, 8(13):10327-10335, 2020.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dolldr. Designing network design
spaces. In IEEE/CVF conference on computer vision
and pattern recognition (CVPR), pages 10428-10436,
2020.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Gan-
guli, and Jascha Sohl-Dickstein. On the expressive
power of deep neural networks. In International con-
ference on machine learning (ICML), pages 2847-2854.
PMLR, 2017.

Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Ad-
versarial attacks and defenses in deep learning. Engi-
neering, 6(3):346-360, 2020.

Albert Reuther, Peter Michaleas, Michael Jones, Vijay
Gadepally, Siddharth Samsi, and Jeremy Kepner. Ai
accelerator survey and trends. In IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pages
1-9. IEEE, 2021.

Armin Ronacher. Welcome to Flask — Flask Documen-
tation (2.2.x), 2022. [Online; accessed 05-Sept-2022].

Ahmed Salem, Rui Wen, Michael Backes, Shiging Ma,
and Yang Zhang. Dynamic backdoor attacks against ma-
chine learning models. In IEEE European Symposium
on Security and Privacy (EuroS&P), pages 703-718.
IEEE, 2022.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In IEEE/CVF
conference on computer vision and pattern recognition
(CVPR), pages 45104520, 2018.

15

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mose-
nia, Mung Chiang, and Prateek Mittal. Darts: Deceiv-
ing autonomous cars with toxic signs. arXiv preprint
arXiv:1802.06430, 2018.

Florian Tramer, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In USENIX Conference on
Security Symposium, page 601-618. USENIX Associa-
tion, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

Jordan Walke. React — A JavaScript library for building
user interfaces, 2022. [Online; accessed 05-Sept-2022].

Binghui Wang and Neil Zhengiang Gong. Stealing hy-
perparameters in machine learning. In IEEE symposium
on security and privacy (SP), pages 36-52. IEEE, 2018.

Xianmin Wang, Jing Li, Xiaohui Kuang, Yu an Tan,
and Jin Li. The security of machine learning in an
adversarial setting: A survey. Journal of Parallel and
Distributed Computing, 130:12-23, 2019.

Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and
Mohammad Abdullah Al Faruque. Leaky dnn: Stealing
deep-learning model secret with gpu context-switching
side-channel. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages
125-137, 2020.

Mingfu Xue, Chengxiang Yuan, Heyi Wu, Yushu Zhang,
and Weiqgiang Liu. Machine learning security: Threats,
countermeasures, and evaluations. IEEE Access,
8:74720-74742, 2020.

Shuo Yang, Ping Luo, Chen-Change Loy, and Xiaoou
Tang. From facial parts responses to face detection: A
deep learning approach. In IEEE International Con-
ference on Computer Vision (ICCV), pages 3676-3684,
2015.

Yuval Yarom and Katrina Falkner. Flush+reload: A
high resolution, low noise, 13 cache side-channel attack.
In USENIX Conference on Security Symposium, page
719-732. USENIX Association, 2014.

Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun
Tsai, Tsung-Yi Ho, and Yier Jin. Cloudleak: Large-
scale deep learning models stealing through adversarial
examples. In Network and Distributed Systems Security
Symposium(NDSS), 2020.

[68] Xiaoyong Yuan, Leah Ding, Lan Zhang, Xiaolin Li, and
Dapeng Wu. Es attack: Model stealing against deep
neural networks without data hurdles, 2020.

[69] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and
Yantao Lu. Hermes attack: Steal {DNN} models with
lossless inference accuracy. In USENIX Security Sym-
posium), 2021.

[70] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He.
A comprehensive survey on transfer learning. Proceed-
ings of the IEEE, 109(1):43-76, 2021.

16

A Appendix: Additional Experimental Results

In this appendix, we report additional results complimentary to experiments mentioned throughout the paper.

System Cache Feature Prevalence Simplified
(MB) convs fcs softms relus mpool apool merge bias

i5-3470 4 X 0.0003 -0.1643 -0.0583 0.6807 -0.6021 0.3475 -0.069 -0.1340 relus>mpool>apool
Y -0.0004 -0.4484 0.3590 -0.4292 -0.0839 0.5101 0.373 -0.2805 apool>relus>fcs

7-4770 3 X -0.8412 0.0808 0.0776 0.0119 0.0625 0.1082 0.5136 -0.0136 convs>merge>apool
Y 03603 -0.0684 -0.0680 -0.6455 -0.0605 -0.0983 0.6524 -0.0718 merge>relus>convs

{7-6850Kk 15 X -0.7878 -0.0029 -0.0038 0.5642 -0.0054 0.0044 0.2462 -0.0148 convs>relus>merge
Y -0.1529 0.0051 0.0001 -0.5671 -0.0118 -0.0081 0.8060 -0.0712 merge>relus>convs

Table A.1: Hardware platforms evaluated against the DeepRecon side-channel attack, and PCA feature prevalence. Well-
fingerprinted systems i7-4770 and i7-6850k closely align on the most prevalent features (Conv, Merge, ReLU).

i5-3470
EEN Exact Accuracy
2 Family Accuracy

Fidelity
OOO0000000H
ORNWAUIONOOO

‘P 2
5, %, .94' s, S5, Ss, °~s‘4, °~94,
¢ @(@({ @(? @(:’ @(3‘
Q(o", 0«, 5 ‘e 0
~0, %0

[oNER) L L, L.
% " 4%0% NN
¢ @(@Q @Q @(@(0 6 <9 {
SAR *"e 0, %
¢ <

i7-4770

Fidelity

©000000000H
OFNWAUIONOWOWO
N
(]
0
0
Q
\‘ ng
> Ng
ng
v
0

""? Foo. Fo Ro, o, T l’ol’ R: ""9 B, Bog, Ty Ro, o % 9,
9 1, 55, Sy, Sy, %, Sy, S5, S5y S,
%, or, Yoo Yo, 4'@ *’e ?\90? +4' 6 4’ Yoo Yoo Yo, 4'@ 4’@ 4’60{90?
@ (YR 4’@ \9(0({?9&{’?(’ QQOCI&((3‘ %,
“z “«“ @,y @ e -y R ¢
2 G "0 %

Figure 13: DeepRecon model architecture & family prediction for TensorFlow 2.10.

17

Name Family Parameters GMAdd KON DS DR

Alexnet - 61.10m 0.72 Y Y Y
ConvNeXt_Small ConvNeXt 50.21m 8.70 Y Y Y
ConvNeXt_Large 197.74m 34.40 Y Y Y

Densenet121 7.99m 2.88 Y Y Y
Densenet161 Densenet 28.68m 7.82 Y Y Y
Densenet169 14.14m 342 Y Y N
Densenet201 20.01lm 4.37 N N Y
Resnet18 11.68m 1.82 Y Y N
Resnet34 21.79m 3.68 Y Y N
Resnet50 Resnet 25.55m 4.12 Y Y N
Resnet101 44.55m 7.85 N N Y
Resnet152 60.19m 11.58 N N Y

VGGI11 132.86m 7.63 Y Y N

VGG13 VGG 133.04m 11.34 Y Y N

VGG16 138.358m 15.50 Y Y Y

VGG19 143.67m 19.67 N N Y
RegNetY-400MF - 4.344m 041 Y Y N

SqueezeNet - 1.248m 0.83 Y Y N
ViTB16 - 86.568m 11.28 Y Y Y
MobileNetV?2 - 3.50m 0.32 Y Y Y
InceptionV3 - 27.161m 2.85 N N Y

Table A.2: Experiment model architectures. (KON=KnockOffNets, DS=DeepSniffer, DR=DeepRecon).

Hardware Average

Average Exact Accuracy . Average Family Accuracy Family Accuracy
Model Across All Hardware Family Across All Hardware 1d.p.)
(1d.p.) (1d.p.) i5-3470 i7-3770k i7-4770 i7-6850k

AlexNet 0.50 AlexNet 0.50 0.29 0.19 0.84 0.67
DenseNet121 0.52

DenseNet161 0.31 DenseNet 0.84 0.52 0.89 0.93 1.0
DenseNet201 0.43

MobileNetV2 0.35 MobileNet 0.35 0.13 0.09 0.37 0.83
ResNet50 0.42

ResNet101 0.52 ResNet 0.43 0.21 0.40 0.35 0.77
ResNet152 0.47

VGG16 0.39

VGGI19 041 VGG 0.77 0.43 0.91 0.81 0.91

Table A.3: DeepRecon Average Results Across Models. Includes results collected across all runs and hardware.

Name PyTorch TensorFlow
VGG16 0.64 -28.76
MobileNet_V2 0.41 -3.76
ResNet50 0.57 -6.96
Inception_V3 0.13 -10.56

Table A.4: DeepSniffer Framework Comparison PyTorch vs TensorFlow. Recorded fidelity between actual and predicted
architecture from PyTorch and TensorFlow frameworks. TensorFlow returns unusable results.

18

Name Target Stolen Distilled Target Distilled Stolen

ResNet18 0.54 0.45 0.35 0.36
AlexNet 0.59 0.48 0.36 0.35
VGG16 0.61 0.44 0.36 0.35

Table A.5: Distillation Accuracy Results. Accuracy scores based on CIFAR100 test set upon original and distilled target and
stolen models.

19

	1 Introduction
	2 Background
	2.1 Deep Learning Systems
	2.2 Model Extraction
	2.3 Challenges in Extraction Attack Research

	3 Threat Model
	4 Extraction Attacks
	4.1 KnockOffNets (KON)
	4.2 DeepSniffer (DS)
	4.3 DeepRecon (DR)
	4.4 MiFace (Inversion Attack)

	5 Framework Design
	5.1 Components

	6 Experimental Setup
	6.1 Hardware & Software Setup
	6.2 Datasets
	6.3 Target Models
	6.4 Extraction Attacks
	6.5 Evaluation metrics

	7 Extraction Attack Evaluation
	7.1 KnockOffNets (KON)
	7.2 DeepSniffer (DS)
	7.3 DeepRecon (DR)
	7.4 Adversarial Attack Staging

	8 Discussion
	8.1 Key Extraction Characteristics
	8.2 Further Attack Staging
	8.3 Extraction Equivalency

	9 Related Work
	10 Conclusion
	A Appendix: Additional Experimental Results

